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Abstract: Single-frame blood flow maps from laser speckle contrast imaging (LSCI) contain
high spatiotemporal variation that obscures high spatial-frequency vascular features, making
precise image registration for signal amplification challenging. In this work, novel bivariate
standardizedmoment filters (BSMFs) were used to provide stable measures of vessel edge location,
permitting more robust LSCI registration. Relatedly, BSMFs enabled the stable reconstruction
of vessel edges from sparsely distributed blood flow map outliers, which were found to retain
most of the temporal dynamics. Consequently, data discarding and BSMF-based reconstruction
enable efficient real-time quantitative LSCI data compression. Smaller LSCI-kernels produced
log-normal blood flow distributions, enhancing sparse-to-dense inference.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A technique for full-field blood flow imaging, laser speckle contrast imaging (LSCI), provides
rapid snapshots of blood flow values. When averaged spatially over a suitably large region-of-
interest (ROI), such as over a large vessel, relative blood flow values can be shown to have a
high degree of accuracy and temporal precision [1]. Furthermore, when explicitly correcting
for rapid temporal variations due to cardiac pulsation, the effective signal-to-noise ratio (SNR)
can be significantly improved [1, 2]. Unfortunately, pseudo-random high-frequency spatial
and temporal measurement variation burdens LSCI with a low SNR at small spatial and short
temporal scales (as with all laser speckle correlation techniques [3]). To compensate, temporal
averaging of spatially stable or accurately registered sequential images can be used to enhance
the spatial resolution. However, the aforementioned variation in the LSCI blood flow maps (or
unprocessed speckle images) is highly problematic for accurate sequential image registration as
high contrast features are obscured. Consequently, potential short time-scale image alignment
artifacts caused by animal breathing, specimen manipulation, or behavioral locomotion [4] are
difficult to correct. Under ideal experimental conditions, relative movement can be limited to less
than one micron. However, movement of tens-of-microns due to the aforementioned causes is not
uncommon, particularly in cases where implant or restraint interfaces have become compromised.
Consequently, LSCI image registration is often desired but faces unique challenges. Moreover,
given the potential demonstrated for application of LSCI in many scenarios where movement is
likely, such as intra-operatively [2] or point-of-care applications [5], there is significant benefit to
robust registration for signal amplification. It has been shown that the perceived vessel visibility
associated with macroscopic temporal speckle contrast maps are improved by prior speckle

                                                                      Vol. 9, No. 11 | 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5615 

#334561 https://doi.org/10.1364/BOE.9.005615 
Journal © 2018 Received 11 Jun 2018; revised 30 Aug 2018; accepted 13 Sep 2018; published 19 Oct 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.005615&domain=pdf&date_stamp=2018-10-19


image registration based on persistent pixel-scale structural features [6]. However, it has not been
demonstrated that robust LSCI registration is possible for microscopy-based LSCI, cortex-only
field-of-views (FOVs), or large movements. Microscopy-based LSCI permits accuracy optimized
(pixel-wise speckle contrast Nyquist criteria [7]) micro-vascular flowmetry with high optical
collection efficiency and minimum speckle size relative to vessel size (higher resolution). The
increased accuracy and resolution are associated with higher spatiotemporal signal variation
and, as such, persistent pixel-scale structural features are absent. Moreover, for small FOVs, as
extra-cortical features are absent, image registration must be directed solely by features extracted
from tissue undergoing vascular dynamics. Furthermore, pixel-scale speckle-driven features are
assuredly changed for large displacements.
In a pragmatically separate but fundamentally related issue, the quantitative high bit-depth

images required by LSCI and other scientific imaging applications are difficult to compress.
The on-disk size of such images cannot be reduced, and is often increased [8], by conventional
compression schemes. Recent advancements and a characterization of the problem complexity
associated with high-bit depth medical image compression are provided by reference [9]. This
is a particularly difficult issue for LSCI where the high spatial frequency information prevents
efficient compression with wavelet-based codecs, as wavelet transforms are effectively high pass
filters [10]. Moreover, active image compression requires computational resources which can
interfere with stable data transfer. Thus, due to the inherent noise of individual raw speckle
images or single-frame blood flow maps, LSCI is limited both with respect to data compression
efficiency and registration stability. In this work, an image filtering approach is introduced to
mitigate these noise induced limitations.

We have previously demonstrated a sub-depth of field (DOF) active misfocus correction scheme
for LSCI based on the fourth standardized moment of vessel cross-sections [11]. A covariance
matrix corresponding to a circular ROI enabled vessel orientation estimation independent of
lateral translation. Then translation insensitive profiles were computed by cropped rotation
and projection of an inscribed square ROI with subsequent recursive one-dimensional cropping
around the profile mean. Our misfocus measure, which we termed ζ , used a mixture of statistics
from circular and square ROIs to provide a larger dynamic range for misfocus correction. It is
well established that higher-order moments retain detailed image information but are sensitive to
white noise [12,13], making them unsuitable for many image discrimination tasks [13]. Thus,
we asserted that the sub-DOF behavior of ζ is due to vessel geometric features being closely
associated with misfocus. However, within single-frame LSCI-derived blood flow maps, noise
is multiplicative (ie., non-white noise). Consequently, the accuracy of ζ may be further due to
spatial moment-based statistics in general having a high SNR when applied to LSCI-derived
blood flow maps. Therefore, we are motivated to expand the characterization of spatial moment
statistics and parameters affecting blood flow value distributions. Moreover, we seek to determine
if spatial moment features can be further exploited for lateral motion correction in addition to
axial. A practical limitation was the absence of an image filtering algorithm for ζ-like statistics.
In this work, we introduce an efficient rolling-sum approach for calculating central moment-

based statistics across arbitrary spatial directions within a circular or square sliding window. We
found that when applied to LSCI blood flowmaps, bivariate standardized moment filters (BSMFs)
produced sharp stable features associated with vessel edges. We demonstrate that these edge
features can enhance lateral registration of sequential LSCI frames, thereby increasing the
spatial resolution and accuracy of blood flow measurements. Furthermore, both temporal blood
flow dynamics and spatial vessel edge dynamics could be reproduced from sparsely distributed
outlying blood flow values, thereby permitting quantitative real-time data compression.
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2. Methods

This work is a proof-of-concept demonstrating stable edge detection in LSCI blood flow maps. 
Stable edge-detection was exploited for image registration and data compression. We focused on 
imaging blood flow dynamics associated with disease models of seizure and stroke in superficial 
rodent cortex.

2.1. Imaging systems, surgical procedures, and speckle imaging simulation

Laser speckle images were collected on our previously published imaging systems to quantify 
the properties of BSMFs in LSCI. Three imaging systems were used: table-top [14], miniature 
head-mounted [4] and, primarily, a microscope integrated system [1]. The field-of-view of the 
systems was >2 mm, ∼2 mm and 200-400 µm, respectively. All three systems were optimized 
for concurrent LSCI and intrinsic optical signal imaging (IOSI) using coherence modulation 
of vertical-cavity surface-emitting lasers (VCSELs). The IOSI channel permits concurrent 
measurement of blood oxygenation spectroscopically. The LSCI illumination wavelength was 
680 nm. The low spatial contrast and high temporal variation of low coherence near-infrared 
reflectance images make IOSI ill-suited to image registration (see Visualization 1).
The surgical procedure for the microscope integrated system [1] consisted of a craniotomy 

followed by the mounting of a perfusion system, which permitted objective lens immersion, 
illumination light-guide immersion, and topical convulsive drug (4-aminopyridine) application. 
The surgical procedure for the table-top imaging system [14] consisted of a craniotomy followed by 
an agarose stabilized cover-slip mount. Stroke was induced through carotid artery restriction via 
surgical suture. The miniature imaging system [4] required the implantation of a chronic optical 
window and device mount weeks before imaging. Absence seizure-like events were induced 
through intraperitoneal injection of a convulsive drug (pentylenetetrazol). The photothrombosis 
example (rose bengal 30 mg/kg i.v. with 545±10 nm excitation) was conducted on the microscope 
integrated system without the immersion optics using a CD-1 mouse.
Fresnel propagation simulations of a microscope were used to assess location accuracy with 

known object perturbations. We simulated a 1× mag. 4 f correlator design: two 30 cm focal 
length lenses, �8 mm front and back apertures, optical wavelength 680 nm, Fresnel number 
40, and 20482 grid elements with 8 µm pitch. The Fresnel impulse response propogator of the 
complex field U  over free-space distance z was

U(x, y; z) = FFT−1
{
FFT

{
eikz · (iλz)−1 · e ik

2z (x2+y2)
}
· (∆x)2 · FFT {U(x, y; 0)}

}
where FFT{·} is the 2D fast Fourier transform including zero-frequency centering and ∆x is the
spacing of the simulation grid (x, y) [24].

2.2. Choice of edge enhancement filter

We investigated the properties of spatial moment-derived image filters applied to single-frame
LSCI-based blood flow maps acquired using the brain imaging systems referenced in Section 2.1.
Individual camera exposures of speckle intensity were converted to blood flow maps by applying
an n × n pixel rolling sum speckle flow index filter, kn = 〈I〉2 /[

〈
I2〉 − 〈I〉2]. Within the context

of the two applications demonstrated here, the most useful post-kn image filters were those
providing stable vessel edge detection. The parameter we found most useful was the maximum
univariate standardized moment occurring in a set of directionally projected cross-sections. The
projection was most efficiently calculated across arbitrary directions using bivariate centralized
moments (see Appendix 6.1) which were efficiently calculated from the bivariate non-centralized
moments (see Appendix 6.2) generated via a rolling-sum algorithm. For simplicity, we chose
the term bivariate standardized moment filters (BSMFs) for all statistics derived in this manner.
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We introduce the symbol, ξγ, for the γ-order directionally optimized BSMF. Efficient BSMF
algorithms were developed for both circular (with sparse acceleration) and square filter windows.

2.3. Filter directed lateral image registration

To improve the resolution and accuracy of LSCI blood flow maps, single-frame images were
registered (translation and rotation) using the publicly available ImageJ plugin StackReg prior to
temporal averaging. This plug-in provides a propagating registration where the previous frame
anchors registration of the next. The algorithm is optimized for precise detection of sub-pixel
movement between frames [15]. We trivially modified the algorithm such that sequential
single-frame blood flow maps could be registered based on the registration computed for filtered
images generated from these maps.

2.4. Sparsity enforcement scheme for data compression

The BSMFs were used for edge detection using fractions of the original data. We implemented
a naive sparsity enforcement scheme in which only the top portion of blood flow values were
retained and all values below a threshold were discarded. An encoding strategy was adopted
such that the ratio of retained data (relative to an unprocessed frame) was twice the ratio of
retained pixels: The retained 32-bit floating point flow values (threshold to max) were rescaled
into unsigned 16-bit integers (0 to 65535). The retained pixel indexes were encoded as the row
major distance between adjacent pixels (also unsigned 16-bit integers). For moment calculations,
all blood flow values had a regularization offset of one.

3. Results

The results are presented as follows: 1) Low-noise edge-selective properties of BSMFs are
characterized including the spatial precision associated with BSMFs for image displacement
assessment. 2) Reduction of movement induced measurement error through sub-pixel registration
is demonstrated, with quantification of registration precision enhancement. 3) The effect of
window geometry, directional optimization and blood flow value rescaling on BSMFs are
investigated. 4) The dependence of blood flow value distributions on flow index kernel choice
is investigated. 5) The effect of explicit sparsity enforcement on fast temporal dynamics and
BSMF-based edge reconstruction is presented. 6) The dynamic tracking of reconstructed edge
features from sparse blood flow values during large flow perturbations for the accurate tracking of
absolute vessel diameter is shown. 7) Lastly, the reconstruction of temporal dynamics associated
with large flow perturbation is demonstrated through non-linear histogram re-normalization.

3.1. Low-noise edge-selective properties of bivariate standardized moment filters

We found a distinguishing feature of BSMFs, as applied to LSCI blood flow maps, is that they
select precise features around vessel edges while retaining little noise from the original blood flow
map. A computed blood flow map is inherently noisy and spatial averaging (or band-passing)
retains a significant portion of this noise (see Fig. 1(a, e)). In fact, speckle suppression through
both averaging and band-passing were found to increase registration error (data not shown).
As we found previously [11], the orientation of an observed vessel can be stably computed
from a covariance matrix, Cxy , corresponding to a circular window spanning a vessel. The
longitudinal and cross-sectional directions correspond to eigenvectors of Cxy . The corresponding
eigenvalues are extrema of variance σ2

max and σ2
min, respectively. For smaller window diameters,

the parameters σ2
max or σ2

min behave as edge selective filters (see Fig. 1(b, f)). However, the edge
features are not highly discernible from background. Conversely, the BSMFs-derived parameters
ξ3 and ξ4 were found to produce sharply defined features at vessel edges from single-frames
(see Fig. 1(c,g)). The low specificity of the variance-based parameter in the denominator of
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Fig. 1. Stable edge detection properties of BSMFs. (a) Single-frame LSCI blood flow map.
(b) Filters based on extrema of 2nd-order moments i) σ2

min and ii) σ2
max applied to a. (c) The

BSMFs i) ξ3 and ii) ξ4 applied to a. (d) ξ4 as in c for i) smaller and ii) larger filter windows.
Filter window sizes in b-d indicated by black circle. (e-h) Cross-section profiles from a-d,
respectively, for dashed-line indicated in a. The red curve in e corresponds to vertical pixel
averaging within white box in a. Higher-order BSMFs ξ5 and ξ6 also shown in g.

all BSMFs did not appear to limit filter edge specificity. A similar phenomena was previously
observed with respect to our sub-depth of field misfocus parameter ζ [11]. From observation
of cross-sectional profiles, the ξ4 and ξ6 filters appear to provide better background feature
suppression relative to edge-based features than the ξ3 and ξ5 filters. The ξ6 filter provided only
slightly better feature visibility than the ξ4 filter. The similarity between these two filters implies
that the ξ4 filter is sufficient in most cases. Changing the size of the filter window results in a
trade-off between background noise and the sharpness of edge features (see Fig. 1(d,h)).
We quantified the SNR, 〈σ2

signal〉/〈σ
2
noise〉 = 〈σ2

xy〉t/〈σ2
t 〉xy , of filtered images from the

example shown above as spatial feature variation over temporal signal noise occurring during
short (0.8 s) stable epochs between animal breaths (see Table 1). All BSMFs significantly
improved the SNR relative to the original blood flow maps and second order filters. For the full
FOV, the ξ5 filter had the highest SNR and its temporally averaged filter (not shown) was the
most specific to vessel edges. For a 100×100 µm region spanning the arteriole shown (for which
the filter and flow values were high) the SNR was higher for all filters with ξ6 increasing the least.
For this region, the ξ3 filter had a higher SNR than the ξ5 filter.
We found that BSMFs are able to enhance the accuracy of image displacement estimates. In

particular, the ξ3 and ξ5 filters had a ∼ 2.3 to 2.9 fold higher intrinsic spatial precision than blood
flow maps. We characterized the spatial stability of maps through assessment of mean location
shifts, r =

√
x2 + y2, implied by frame-to-frame cross-correlation during short (0.8 s) stable

epochs between animal breaths (see Table 2). The full-frame cross-correlations were evaluated

Table 1. The SNR associated with LSCI blood flow maps and associated BSMFs assessed
during static epochs, for the full FOV in Fig. 1 and a 100 × 100 µm arteriole-centered ROI.

SNR : ROI / Filter SFI σ2
min σ2

max
aξ3 ξ4 ξ5 ξ6

full FOV 3.3 ± .1 5.3 ± .1 2.8 ± .1 15 ± 1 11 ± 1 17 ± 1 13 ± 1

arteriole ROI 3.9 ± .1 7.0 ± .2 4.7 ± .1 23 ± 2 14 ± 1 21 ± 2 13 ± 1
a The ξ3 SNR is 4.5 ± .3× (full FOV) and 5.9 ± .5× (arteriole ROI) higher than SFI.
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Fig. 2. Spatial precision assessment of filters via cross-correlation based estimation. (a)
Comparison of inferred displacement from ξ3 and ξ5 filters against inference using blood
flow maps. Actual displacement image is approximately 15 pixels. (b) Comparison of ξ4
and ξ6 filters for the same series in a. (c) Comparison of all ξγ for simulated imaging of an
optical phase varying cross flow shape displaced 10 pixels at frame 20. Computed flow map
and associated ξ3 filter shown above graph. (d) Same as c for optical phase varying square.

over ±17 pixels (±13.6 µm in object plane). Two reference frame conditions were assessed: the
first frame in an epoch and the previously occurring frame. For both conditions, the σ2

min and
σ2
max filters decreased measured spatial stability. Conversely, the ξγ filters increased measured

spatial stability, with the exception of the ξ4 previous frame reference. The ξ3 and ξ5 filters
had the least movement instability suggesting they are the filters best suited for the evaluation
of image displacement. The average frame-to-frame error was lower for the previous frame
registration condition for blood flow maps and all corresponding filters. This suggests there is an
advantage to rolling or pyramidal registration approaches for LSCI signals.
Similarly, we used a cross-correlation to assess whether image displacements could be

more accurately tracked by ξ filtered images. For the example chosen, there was a recurrent
breathing related rightward displacement of 12 µm (15 pixels). The size and direction of the
recurrent displacement was estimated visually a priori. The ξ3 and ξ5 filters predicted sample
displacements consistent with the visual assessment of both artifact timing and magnitude (see
Fig. 2(a)). Moreover, they showed higher specificity than blood flow maps which predicted
similar displacements. The displacement estimates based on blood flow above the 17 pixel
search range reflect error in vertical location estimation. The ξ4 and ξ6 filters also showed greater
breathing related displacement specificity (see Fig. 2(b)). However, the ξ4 filter, in particular,
showed the least specificity and was prone to vertical location estimation error.

We performed Fresnel propagation simulations of an LSCI system as this allowed us to assess
accuracy using known displacements. Furthermore, it provided a confirmation that our observed
noise insensitivity is not solely dependent on some specific feature of our experimental procedure
or system. Two different samples were assessed: 1) A cross of varying optical phase to reflect
vessels with different orientations (see Fig. 2 (c)) and 2) a square of varying optical phase to
provide a case without continuous edges (see Fig. 2 (d)). In both cases, the simulated phase
varying object was displaced 10 pixels to the right. The relative accuracy of ξγ filters was

Table 2. The spatial location precision of LSCI blood flow maps and associated BSMFs
assessed with cross-correlation during static epochs. Units are pixels (scale 0.8 µm/pixel).

〈r〉: ref. / filter SFI σ2
min σ2

max
aξ3 ξ4 ξ5 ξ6

initial frame 5.6 ± .3 8.1 ± .3 10.5 ± .9 1.9 ± .1 4.1 ± .3 2.0 ± .2 3.2 ± .3

previous frame 3.1 ± .3 7.3 ± .5 10.2 ± .7 1.2 ± .1 3.8 ± .1 1.3 ± .1 2.7 ± .2
a The ξ3 precision is 2.9 ± .2× (init. frame) and 2.6 ± .3× (prev. frame) higher than SFI.
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Fig. 3. Improved sub-pixel registration of blood flow maps through BSMF guidance. (a) A
high resolution blood flow map produced by temporally averaging maps occurring between
breathing related motions (generated from fifteen 0.8 s stable epochs within a 16 s epoch).
All graphs b-d, f, & g share a common correspondence with respect to registration strategy:
stable reference (blue), ξ3 filter directed (red), ξ4 filter-directed (green), no registration
(orange), and self-directed (black). (b) Vessel-edge cross-sections for motion artifact
associated blood flow maps. The paired (same color) curves represent the cross-section
distributions (µ±σ) for fourteen blood flow maps each associated with a 0.3 s breath-related
motion within the same 16 s epoch. (c) Artery adjacent region blood flow time trace
distributions associated with the same motion artifacts in b (each registration was initiated
from the indicated time zero). (d) Correlation loss of single-frame blood flow maps with
reference map a. Distributions correspond to repeat series registrations each initialed at 1 of 5
sequential motion artifacts. (e) Correction for motion artifact due to a 34 s unintentional
lateral stage drift. (f) Cross-sections corresponding to region indicated in e. (g) Correction
for 11 s lateral motion artifact due to stroke induction. (h) Cross-sections for central vessel
in g.

consistent with the experimental results. In particular, the ξ4 filter had the lowest displacement
specificity and was distinctly worse for the more challenging square flow shape case.

3.2. Registration-based reduction of movement induced measurement errors

The stability associated with BSMFs was found to extend to a more precise sub-pixel registration
approach [15]. The chosen algorithmused nonlinear least-square intensity differenceminimization
with pyramid (coarse-to-fine) spline fitting. This algorithm was the one we found in practice to
be most reliable for registering short sequences of LSCI blood flow maps. However, its accuracy
was reduced by large sample motions and gradual accumulation of alignment error. Here we
show that sub-pixel registration error was reduced using ξγ filter-direct registration.
In the example from Section 3.1, high resolution blood flow maps can be generated from the

LSCI images occurring between the breathing related motion artifacts (see Fig. 3(a)). Conversely,
blood flow maps acquired during lateral sample motion have distorted vessel edges (see Fig. 3(b)).
For these short motion artifacts, high resolution temporally averaged blood flow maps can be
generated from such image sequences after the application of the sub-pixel registration algorithm
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Table 3. Accuracy of registration approaches. Corresponding to Fig. 3: (b) The variation of
edge profiles during movement artifact. (c) The variation of time traces before and after
registration of recurrent artifact. (d) Rate of correlation loss with respect to static reference.

Fig. 3 ref. Dev. vs. Reg. None Self ξ3 filter ξ4 filter

(b) 〈σ〉edge (×10−2) 8.2 ± .6 8.4 ± .7 6.1 ± .5 6.2 ± .5

(c) 〈σ〉before (×10−2) 4.6 ± .3 a4.8 ± .3 4.4 ± .2 4.7 ± .3

〈σ〉after (×10−2) 4.4 ± .3 b17.4 ± .6 4.8 ± .1 5.4 ± .2

(d) Slope of R2 (×10−2) 0.3 ± .2 c−4.3 ± .2 d−0.2 ± .0 −1.5 ± .1
e (d′) Slope of R2 (×10−2) 0.1 ± .1 −3.4 ± .1 −0.5 ± .0 −0.6 ± .1

a, b Flow measurement error is 3.6 ± .3× higher after movement for self registration.
c, d Registration stability increases by 23 ± 5× with ξ3 filter guidance of registration.
e Repeat of panel d during vessel dilation during seizure onset.

directly to single-frame flow maps (i.e. self-directed registration). Using either ξ3 or ξ4 filter-
directed registration increased the accuracy of high resolution flow profile estimations. This can
be seen as the narrower distribution width, µ ± σ, of location specific flow measurements at the
vessel boundary (see Table 3(b)). The higher accuracy of ξ3 and ξ4 filter-directed registration is
most clearly observable from the consistency of blood flow time traces before and after correction
of this recurrent motion artifact (see Fig. 3(c)). Conversely, self-directed sub-pixel registration
cannot consistently remove motion artifacts, observable as a 3.6± .3× increase in signal variation
post artifact (see Table 3(c)). Moreover, errors in self-directed registration accumulate more
rapidly over time (see Fig. 3(d)). This is prohibitive for sequential frame registration approaches
(such as this algorithm) which benefit from coherence driven similarity in temporally adjacent
frames and can account for large feature changes, provided they occur gradually. Using ξ4
filter-directed registration reduced the accumulation of error, while the ξ3 filter almost completely
suppressed the accumulation of error (see Table 3(d)). In the presense of changing edge features
during vessel dilation (i.e. onset of seizure-like event shown in Fig. 7&9(a)), the ξ3 and ξ4
filter-directed registration stabilities converged and self-directed registration became only slightly
more stable (see Table 3(d′)). Conversely, exaggerating the rate of vessel diameter change by
synthetically interleaving more distinct maps could eliminate the filter-based stability advantage
(data not shown). As such, fast LSCI acquistion is likely necessary for stable non-elastic image
registration (i.e. for image alignment using only rotation and translation).
During one imaging experiment, there was a temporary lateral subject displacement due to

unintentional physical contact with the microscope translation stage. For this larger (∼ 45 µm)
and longer (∼ 34 s) motion artifact, self-directed registration was worse than no registration at
all (see Fig. 3(e, f)). Conversely, using ξ3 or ξ4 filter-directed registration produced a corrected
imaging series for which the temporal average was highly correlated with a blood flow map
generated from frames acquired prior to movement. For a similar motion artifact (∼ 11 s and
∼ 50 µm) over a larger FOV (2 mm), self registration performance was superior to no registration
(see Fig. 3(g, h)). However, using ξ3 or ξ4 filter-directed registration again produced a temporally
averaged blood flow map that more closely matched an associated static reference map. This
small motion was due to suture tension applied to the carotid artery for induction of ischemia.

We found that ξγ filters within about 20% of the estimated optimum filter size would produce
comparable registration. In general, attempts to suppress noise such as the application of spatial
low-pass filters or a rolling average only made registration less stable leading to rapid walk-off
(data not shown). This is likely due to a relative absence of distinct features in the image.
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Fig. 4. Effect of filter window shape, orientation searching and non-linear value re-scale.
(a) Map of square window ξ4 filter based on only vertical univariate projections. Extension
of filter in a to include (b) eight univariate orientations, and (c) a circular filter window.
(d& e) Logarithmic value rescaling prior application of ξ4 in b& c, respectively. (e) Same
as c with prior logarithmic rescaling. (f) Same as c with prior exponential rescaling.

3.3. Effect of filter window shape, direction searching, flow value re-scaling

In this section we look at the interaction effects of perturbation from optimal BSMF parameters.
In addition to providing an intuition for accuracy/efficiency trade-offs, features leading to
stabilization of filters are revealed. Three modifications are investigated: 1) Filter window
shape; square filter windows are more efficient but projections along diagonal orientations are
different than horizontal/vertical. 2) Projection orientation searching; more comprehensive
direction searching would be expected to provide more precise features. 3) Blood flow map
value re-scaling; suppression of outlying values should, in general, enhance edge detection. We
chose the ξ4 filter for this characterization as its lower SNR and sharp features should be more
susceptible to perturbation.

In the proceeding section, we focus solely on the properties of BSMFs based on circular filter
windows applied directly to blood flow maps. The computational efficiency of ξγ filters depends
on filter window shape and resolution of direction searching (see Appendix 6.1). The ξ4 filter
map shown in Fig. 4(a) corresponds to square filter window with vertical value projection. This
is the simplest and fastest ξ4 filter. As most vessel edges in this example are vertical this simple
filter detects the majority of features. The ξ4 based on eight orientations, as shown in Fig. 4(b),
highlighted additional edges but introduced non-specific background features. Conversely,
using a circular window, as shown in Fig. 4(c), highlights even further vessel edges without the
background signal from the parenchyma. Consequently, outside of this characterization, section
circular windows were used exclusively. For the blood flow maps we investigated, using optimally
selected filter diameters, the ξγ filters sharpness was negligibly improved beyond π/8 projection
angle resolution.
To investigate the contribution of outlying flow values, we perturbed the measured blood

flow values with a non-linear rescaling (either logarithmic or exponential). A logarithmic
rescaling was applied before applying a square window ξ4 (see Fig. 4(d)). This significantly
reduced edge feature continuity and increased background signal. A logarithmic rescaling was
applied before applying the circular window ξ4 (see Fig. 4(e)). This also increased background
noise but to a lesser extent. These results suggest that circular windows are more robust to
perturbation. Moreover, reducing the influence of outliers reduces filter feature specificity.
As outlying flow values are most perturbed by logarithmic rescaling, this suggests outliers
directly contribute to feature stabilization. The converse re-scaling (i.e. exponential) was applied
before applying the circular window ξ4 (see Fig. 4(f)). Individual filter maps were more varied
frame-to-frame but median filter behavior shown was consistent with vessel edges and had low
non-specific parenchymal signal. This suggested that outlying flow values support BSMF-based
edge reconstruction but redistributing these and intermediate values increases signal variation.
Consequently, we investigated the influence of outlying flow values more directly in Section 3.5.
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Fig. 5. Distribution of blood flow index values based on kernel size kn. (a) Distribution for
first four odd kernels n = 3, 5, 7,&9. (b) Distribution shift associated with ictal event for
n = 3&9. (c&d) Distributions after temporal averaging of frames in a&b, respectively.

3.4. Smaller speckle flow index kernels produce simpler distributions of sampled blood
flow values

We found the sparsity of a single-frame blood flow map is dependent on the size of the flow index
kernel, kn. Smaller kn have a greater range of outliers and simpler distribution shapes (most easily
seen in a logarithmic scale, see Fig. 5(a)). In this case, for the limit of the smallest odd kernel,
k3, we see a log-normal distribution of blood flow values (excess kurtosis of -0.1± 2 × 10−3).
For increasing kn, additional features begin to become evident as the distribution deviates from
log-normal (excess kurtosis of -0.5, -0.7, & -0.8± 2 × 10−3 for k5, k7, & k9, respectively). These
features include a second flow maximum appearing below the central flow maximum and a
subtle bulging along the upper value tail. Increased blood flow due to a seizure-like event
results in a positive mean shift (+0.43 ± 2 × 10−7 for k3 and +0.42 ± 2 × 10−7 for k9) and
negative skew shift (−0.15 ± 1 × 10−3 for k3 and −0.28 ± 1 × 10−3 for k9) in the flow value
histogram (see Fig. 5(b)). Based on the aforementioned measures, calculated changes in relative
blood flow are similar for large and small kn, yet the blood flow value distributions for small
kn have less shape variability. The combined simplicity and shape stability of k3 implies its
distribution can be most easily inferred given a subset of distribution samples. The lack of
complexity would also imply that information is lost. However, after temporal averaging, the
flow value distributions are far less dependent on kernel size (see Fig. 5(c)). Specifically, all four
kn distributions have greater similarity, with the most distinct distribution (k3) appearing to have
a constant offset (i.e. scaling factor not effecting relative flow calculations) and less sharp local
extrema. Moreover, the predicted relative distribution shifts are still similar across kernel size (see
Fig. 5(d)) and the temporally averaged frames from different kernel sizes are all highly correlated
(R2 > 0.99 ± 4 × 10−5, assuming spatial low-passing of the largest kernel diameter to remove
resolution differences). Consequently, smaller kernel sizes appear to benefit from distribution
simplicity without losing information sought in lower-noise temporally averaged maps. Therefore,
we choose to focus on the smaller kernels, k3 and k5, for our expanded investigation on the
influence of sparsity enforcement. Note: in Fig. 5(a) the upper 1% of values in flow distribution
corresponds to 97 % and 78% of the k3 and k5 range, respectively, in linear flow value space.

3.5. Retention of the edge feature detection properties of BSMFs and subtle rapid
temporal dynamics in the presence of sparsity enforcement

The vessel edge selection properties of ξγ filters were preserved when applied to images in
which only sampled flow values above a threshold were retained. Sampled flow values above
a sufficient threshold were pseudo-sparsely distributed (highest values often adjacent) within
a single-frame and their locations were highly variable frame-to-frame. The spatial features
observed in high resolution blood flow maps (generated by temporal averaging maps within short
static 0.8 s epochs) degenerate rapidly with increased sparsity (see Fig. 6(a, e)). Conversely, the
disappearance of edge-related features is more gradual for single-frame ξγ filtered images, such as
ξ3 (see Fig. 6(b, e)). In fact, edge features first become sharper with increasing sparsity, eventually
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Fig. 6. Spatial reconstruction and fast temporal dynamic preservation in the presence of
sparsity enforcement. (a) Static epoch blood flow maps (25 frame average) with reduced
pixel retention over five orders of magnitude (factors of 10−1/5). (b) The ξ3 filter applied
to single-frame “sparse” blood flow maps from a (25 frame average). All maps in a and
b were spatially low-pass filtered at the kernel size, k5, for visual clarity. (c) Temporal
flow profile of artery and vein for 25 frame static epoch during four cardiac cycle events
(occurring at 5 Hz) for i) 10−1.6, ii) 10−2.6, iii) 10−3.6 and iv) 10−4.6, pixel retention (dashed
curves represent no sparsity condition). (d) Correlation, R2, of sparse and dense temporal
profiles from c across all retention levels shown in a for both i) the k5 results in a and ii)
for k3 (dashed curves are [(R′ ± σR′)†]2). (e) Sum of spatial Fourier coefficients (features
> 6 pixels) for both k3 and k5 and their corresponding ξ3 filters (all curves are µ ± σ).

approximating those derived from dense maps at a given sparsity. Moreover, as the edge features
disappear with further sparsity enforcement, the filtered maps approximate the shape of the vessel
dense kn map. Consequently, ξγ filters enable spatial feature reconstruction from a small fraction
of the sampled flow values. Furthermore, the simplicity of flow value distributions and their
transformations, particularly for smaller kernel sizes (see Section 3.4), enables the highest flow
values to retain the fast temporal dynamics associated with cardiac pulsation (see Fig. 6(c,d)). In
this example, a consistent arteriole (lead) and venous (lag) phase relationship was observable
for 0.25% or 10−2.6 pixel retention. Choosing the larger k5 kernel resulted in better arteriole
signal retention, whereas the smaller k3 kernel resulted in more balanced signal retention. Note:
bounds in correlation plots computed through transformation to the z-distributed parameter
R′ = tanh−1 R, bounding R′

∂
= R′ ± σR′ , and inversion R∂ = R′

∂
† = tanh R′

∂
. The maximum

ξ3 spatial frequency occurred at a higher level of sparsity for k3 than k5 but k3 had less spatial
frequency content for pixel retention above 1% (see Fig 6(e)).
We have shown that these filters enable spatiotemporal feature reconstruction from a trivial

sparsity enforcement scheme. These filters close the loop between spatial and temporal retention
of underlying vascular features in the presence of sparsity. However, it must be noted that sparsity
enforcement reduces the stability of filters frame-to-frame. Consequently, registration and sparse
reconstruction cannot be trivially combined. In the remaining results sections, we demonstrate
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Fig. 7. Measuring vasodilation associated with seizure from sparse blood flow maps.
(a-c) Superimposed pre-ictal (green) and ictal (red) maps of i) blood flow, ii) sparse blood
flow, and iii) ξ3 of single-capture sparse blood flow maps. All maps were produced from
temporal average within single static epoch of 0.8-0.9 s. (d) Cross-sections for region in a
(mean projection along the short axis of the indicated rectangle). (e) Cross-sections across
sparsity for regions in a-c. All cross-section d-e regions match the ξ3 kernel width to account
for filter-based averaging. (f) Relative vessel diameter (pre-ictal no sparsity normalized
to one) based on the estimated edge locations across sparsity from the cross sections in
e. The edge features based on ξ3 are contrasted with edge location estimation based on
the FWHM. Paired same-color curves correspond to µ ± σ for 5 sequential static epochs.
(g) The pre-ictal versus ictal difference in relative vessel diameters for example a including
diameter estimation based on profile standard deviation.

that sparse encodings can be used to reconstruct vascular spatiotemporal dynamics associated
with physiological events.

3.6. Edge detection properties of BSMF are robust to large flow and diameter changes
enabling vessel shape and diameter tracking from sparse data

To determine if the retained structural information in sparsely sampled flow values is useful for
detecting changes in vascular structure, we compared the sparse structural feature reconstruction
before and during seizure-like events (i.e. pre-ictal v. ictal). Such events involve changes in
arteriole diameter and increased background capillary flow due to neurovascular coupling, both
of which may bias edge localization. The artery flow profiles before dilation (green) and at peak
dilation (red) are shown in Fig. 7(a-d)–i. The corresponding sparse blood flow maps, with 1% of
the sampled values retained, have poorly defined noisy edges for which precise edge estimation
appears difficult (see Fig. 7(a-d)–ii). Conversely, the ξ3 edge detection features, derived from
ξ3 application on single-frame sparse blood flow maps, appear to precisely mirror the vessel
diameters before and during seizure-like events (see Fig. 7(a-d)–iii). Moreover, while the sparse
flow profiles continually get narrower with increased sparsity, the ξ3 profiles first widen then
more gradually narrow and appear to match the dense filter profiles at 1.0±.5 % pixel retention
(see Fig. 7(e)). Consequently, similar edge detection features can be derived from ξ3 application
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Fig. 8. Edge detection of features within a larger FOV. (a) Photothrombotic stroke induced
through fluorescent excitation of rose bengal. i) Stroke (green) and pre-stroke (red) blood
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applied ξ3 filter maps. (b) Vasodilation associated with absence-like seizure imaged with
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Panel ii’ is application of smaller ξ3 for sparsity enforcement on region neglecting largest
vessels. (c)Global stroke through carotid artery obstruction. i)Blood flowmaps of pre-stroke
(green), stroke (red), and ischemia-induced spreading depression (blue). ii) Corresponding
temporally averaged 1% sparsity-enforced single-capture applied ξ4 filter maps. (d) Cross
section for middle vessel from c (yellow box). (e) Miniature device imaging of concurrent
vessel dilation and constriction during animal waking; anesthetized (green) and awake (red).

on either sparse or dense single-frame blood flow maps.
To quantify the stability and bias of edge features from ξ3 filters, vessel diameter estimates from

ξ3 maps were contrasted with diameter estimates from their corresponding flow cross-sections
(see Fig. 7(f)). The FWHM was chosen for direct flow-map-based vessel diameter estimation
as it is also based on edge approximation and provides accurate diameter measurements within
dense blood flow maps without assuming a specific profile shape. The ξ3 diameter estimate was
based on the peak-to-peak distance from ξ3 map cross-sections. We found the relative diameter
change, ∆dd0

, due to seizure was similar for both estimates from the dense maps. However, with
increasing sparsity, the FWHM underestimates the absolute diameter, d, and the difference in
diameter, ∆d. Moreover, measurement precision, 1/σ2, is rapidly lost. Conversely, the ξ3 based
diameter estimates retain significant precision up to and including 1.0±.5 % pixel retention.
Furthermore, for ξ3 both the pre-ictal and ictal vessel diameter estimates (d0 and d1, respectively)
reverse an initial diameter overestimation, resulting in the 1.0±.5% pixel retention derived
estimates closely matching the dense derived estimates. We found that vessel diameter estimation
based on the flow profile standard deviation underestimated absolute diameter with increased
sparsity similar to the FWHM (data not shown). However, this measure was comparable to
the ξ3 estimate with respect to ∆d precision across sparsity, which means that provided both
measures use their unbiased dense map-derived estimates of d0 in the denominator of ∆dd0

, both
provide an accurate measure of relative diameter change from sparse map-derived ∆d (see
Fig. 7(g)). Both estimates for the change in relative diameter were accurate for any pixel retention
fractions at or above 0.40 ± .19 %. This indicates that sparse blood flow maps inherently contain
structural information, some of which can be assessed with second order moment-based statistics.
However, only ξγ filters were found to permit precise location and orientation estimation of vessel
edge features from sparse blood flow maps for absolute diameter assessment (i.e. accurate d0
and d1 estimation at 1.0 ± .5 % pixel retention for unbiased ∆dd0

calculation solely from sparse
estimates). Furthermore, reconstructed edge features help guide the pre-processing stages of
absolute diameter computation: 1) vessel region/segment selection, 2) region orienting for
projection, 3) cross-section profile cropping, and 4) correction for vessel curvature. An example
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Fig. 9. Temporal dynamics associated large blood flow changes are preserved in sparse
values. The dependency of full-field blood flow temporal dynamics on sparsity during a
(a) seizure-like event and (b) ischemic stroke. In both instances, level of sparsity set by
threshold calibrated to baseline.

of the structural flexibility of cortical vessels is shown in Fig. 7(b)–iii where vessel curvature is
higher when dilated. These precise location and orientation features also improve our ability to
register slower displacement artifacts in sparse data as sparsity enforcement produces noise in
unfiltered temporally averaged blood flow maps analogous to single-frame maps.

The arbitrary structural feature reconstruction achievable from sparse blood flow maps with ξγ
filtering can be more easily seen by looking at examples of perturbations over larger FOVs. For
instance, during photo-thrombotic ischemia, blood flow can become restricted within vessels
(see Fig. 8(a)). In this case, a winding blood flow pattern is observed in the large vein in the
center of the FOV. The stability of the ξ3 filtering approach allows this pattern to be clearly
reconstructed from sparse blood flow maps. To capture a large range of vessel sizes over the
larger FOV, a small ξ3 kernel was used. The rate of convergence to stable edge features in the
presence of sparsity is proportional to kernel diameter. Consequently, additional frames beyond
a static epoch were required to produce this map. A second example of feature reconstruction
using a large FOV is provided by tracking of an absence-like seizure with our miniature device
(see Fig. 8(b)). Using a ξ3 filter optimized for large vessels, the dynamics of the full FOV are
reproduced and a vasodilation can be observed in a large vessel. Enforcing sparsity on a smaller
ROI and applying a smaller ξ3 filter enabled visualization of small vessel dilation. A third
example over a larger FOV is provided by imaging the application of a global ischemic stroke
model with an incidental ischemia-induced spreading depression (see Fig. 8(c, d)). The decrease
in vessel diameter post-stroke (due to restricted blood flow) and further decrease upon spreading
depression (likely due to compensatory flow at the depression onset location) can be seen in the
edge filter cross-sections. Lastly, an example of concurrent vasodilation and vasoconstriction is
provided by the monitoring of a waking animal using our miniature imaging device (see Fig. 8(e)).
This example emphasizes the need for reconstruction of individual vessel dynamics.

It should be noted that ξγ filters do not depend on sparse outliers (i.e. they are robust to subtle
image smoothing) but are consistent despite them. Moreover, one can exploit their comparable
behavior in the presence or absence of complete flowmap data for structural feature reconstruction
in the latter case.

3.7. Preservation of temporal dynamics associated with large flow perturbation in
presence of sparsity

The vasodilation observed during seizure-like events is associated with a large increase in blood
flow across the whole FOV. This is due to the hyper-synchronous activity inducing dilation
around a large population of neuro-vascular units. The outlying blood flow values, in addition to
enabling reconstruction of structural changes associated with seizure-like events, were found to
enable reconstruction of the slower (≤ 1 Hz) time-scale temporal dynamics associated with such
large flow increases (see Fig. 9(a)). The generation of accurate blood flow traces required a simple
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Table 4. The absolute error (normalized RMSE) and dynamical error (1 − R2) of sparse
reconstructed temporal flow traces against dense flow trace. Note: the paired RMSE values
are baseline and peak seizure/stroke flow increase/decrease in Fig 9, respectively.

Fig. 9 ref. Error: type / retention 10−1 10−2 10−3 10−4

(a) n-RMSE (%) 0.6, 2.7 1.1, 7.2 1.8, 9.4 3.9, 11.1

1 − R2 (%) 0.1 ± .0 0.3 ± .0 0.7 ± .0 2.8 ± .1

(b) n-RMSE (%) 0.8, 3.6 1.0, 4.1 1.7, 4.9 4.5, 9.8

1 − R2 (%) 0.6 ± .1 0.9 ± .1 2.1 ± .3 11.2 ± 1.5

correction for thresholding-induced non-linear up-shifting of computed distribution means. The
flow value histogram associated with baseline blood flow maps was scaled across increments of
±5 % to derive an interpolated non-linear lookup table for the distribution mean inferred from the
mean of values above a threshold. Without this non-linear correction, the onset and termination
rates are underestimated with respect to peak flow and overestimated with respect to baseline.
To use a signal variable one-to-one inference, pixel retention was defined from baseline and
the associated threshold was applied throughout the series, as opposed to prior sections where
pixel retention was fixed per static epoch. As such, for this scheme the pixel retention fraction is
higher during periods of increased blood flow. Consequently, we also investigated a decreasing
flow trend associated with global ischemic stroke (see Fig. 9(b)). For both the example of flow
increase (due to seizure) and decrease (due to ischemia), the re-scaled sparse flow traces had low
dynamical error (1 − R2 < 3 %) and absolute error (normalized RMSE< 10 %) with respect to
the dense blood flow traces down to 0.10±.05 % pixel retention (see Table 4, only major orders
shown). As the histogram is a log-normal distribution, this interpolated relationship could, in
principle, also have been estimated without ever acquiring dense baseline values. Additionally, a
bivariate non-linear mean interpolation, accounting for a dynamic threshold, could permit a fixed
pixel retention factor, as would be required for stable data transfer when system bandwidth is
running near its limit.

4. Discussion

We demonstrated that BSMFs provide stable edge detection for noisy LSCI-derived single-
capture blood flow maps (see Section 3.1). These BSMFs were initially investigated as we
previously found the related ζ-statistics could provide sub-DOF misfocus localization [11].
Furthermore, BSMF could be modified into a rolling sum algorithm (see Appendix 6.1) giving
them a computational advantage over other filter choices, such as Gabor filters (which require
explicit convolution). We demonstrated that blood flow map-applied BSMF maps had a higher
spatial feature SNR and location specificity than their source blood flow maps. We exploited
this enhanced location specificity to improve the accuracy of sub-pixel registration applied to
LSCI, thereby removing error in blood flow maps and time series (see Section 3.2). Enhanced
registration was also demonstrated during vasodilation, when edge features were elastically
changing, as the acquistion speed of LSCI enables rolling non-elastic alignment of similar feature
maps. The characterization of different BSMF geometries and blood flow value re-scaling
suggested that sparsely distributed outlying flow values contributed to, rather than detracted
from, edge detection stability (see Section 3.3). We found that choosing smaller speckle flow
index kernels increased flow value sparsity and decreased distribution complexity, without
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affecting relative flow calculations associated with physiological changes (see Section 3.4).
Through sparsity enforcement on blood flow maps we found that from only the outliers of these
distributions we could reconstruct vessel edge features and the temporal pulsation dynamics of
individual vessels (Section 3.5). Moreover, these detected edge features were robust to large
flow perturbations enabling the tracking of structural dynamics (see Section 3.6). Furthermore,
the simplicity of the blood flow value distributions enabled accurate inference of the relative
blood flow dynamics associated with these large changes using only outlying values (Section 3.7).
Consequently, sparsity enforcement enables efficient LSCI data compression suitable for real-time
implementation even with limited computational resources.

Speckle patterns have an approximately negative exponential intensity distribution [16], which
is not particularly sparse. The observed sparsity in the blood flow maps is a property of the highly
non-linear response of the speckle flow index calculation to image smoothness (functional analysis
not shown). Here we demonstrated that the multiplicative noise associated with speckle flow index
maps does not mask underlying structural features when assessed with BSMFs. We assert that the
most likely source of edge feature stability, despite the high spatiotemporal variation of outliers,
is that the bivariate mean reference point mitigates outlier variation within a given window.
The unintuitive component of our result is that biasing toward outliers affects feature noise but
not spatial convergence. Within the field of image processing, moment based denoising (with
covariance eigenvector decomposition) has been demonstrated for non-biomedical images [17].
The results of Ref. [17] vary distinctly from those presented here, and bear little resemblance to
the edge-based feature detection scheme outlined in this work. However, their results highlight a
continuity to the literature for standard moments exploiting sparsity to account for noise. In other
contexts, moments have been shown to be useful for velocimetry compression of moving object
image sequences [18, 19]. Others have applied the principles of compressive sensing-based edge
detection for speckle reduction [20]. Their approach appears to produce a low-passed equivalent
of speckle reduction. Conceptually, these two aforementioned works, Refs. [17] and [20], are
the closest approaches we have found related to the structural feature extraction and sparse
reconstruction scheme presented here, respectively.
A limitation of the registration approach demonstrated here is that it requires distinct flow

differences, precluding application during severe ischemia, through skull (non-adaptive) imaging,
or in cases of severe misfocus. There are also several limitations with respect to our data
compression strategy: 1) the parenchymal blood flow values are under-represented, 2) closed-
loop updating of the threshold is required to maintain the flow measurement dynamic range
and/or stable read-out, and 3) for some specimens or implementations, flow value distribution
may remain too complex for outlier guided inference. These issues can be partially mitigated
through: 1) region adjusted thresholding, 2) concurrent retention of low-spatial resolution
temporal dynamics, and/or 3) incremental threshold application based on application specific
criteria. However, all of these solutions reduce data compression efficiency.

There are several imminently feasible extensions of this work: 1)Combining active multi-vessel
ζ-driven active axial correction with post-hoc ξ-driven later correction and electrocardiography
(ECG)-driven pulsation correction would exploit the full dynamic range achieveble with LSCI.
This should promote studies of subtle neurovascular coupling changes with reduced dependence
on trial averaging for signal amplification. 2) Accurate segmentation of concurrent IOSI and
LSCI series using BSMF-based edge features derived from individual LSCI captures. Spatially
averaging within segmented regions should provide both signal amplification and efficient storage
for both temporal blood oxygenation and flowmetry data. Moreover, segmentation parameters,
such as spline curves, could be used for more efficient storage of spatial features. 3) Calibration of
speckle flow index versus absolute velocity using accurate referencing of lateral motion artifacts.
For any given LSCI measurement, there is an ambiguity between blood velocity and total flux [21]
for which calibration could help determine the proportional contribution in any given region. 4)
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Adaptive optics permit coherent imaging using specimen proximate optics other than lenses (such
as optical diffusers, multi-mode fiber optics and even superficial tissue) by correcting for the
transmission matrix associated with arbitrary linear optics. Low-noise BSMF edge features could
improve the per capture LSCI information content leading to more efficient phase optimization,
thereby expanding the range of application under which LSCI can be implemented. 5) Using
rotationally-invariant bivariate moment statistics [22,23] to generate vessel branching pattern
clusterings for automated ROI comparison or larger scale comparisons of vascular morphology.
The circular rolling sum algorithm developed here permits the efficient calculation of these
parameters which should be accurate for sparse single-frame captures enabling efficient vascular
pattern storage.

5. Conclusion

We demonstrated BSMFs enable accurate LSCI spatial registration and provide a robust mecha-
nism for vessel edge feature reconstruction from sparsely distributed outlying blood flow values.
Third order BSMFs provided a 4.5 − 5.9× improvement in SNR and 2.6 − 2.9× improvement
in location precision and reduced sub-pixel registration error accumulation by 23 ± 5×. The
properties of BSMFs lead to the discovery that the highest blood flow values contain much of
the spatiotemporal dynamics contained in LSCI. Accurate tracking of relative vessel diameter
and temporal blood flow dynamics was demonstrated using only the top 0.40 ± .19 % and
0.10 ± .05 % of flow values, respectively. Accurate absolute vessel diameter estimation typically
required retention of only the top 1.0 ± .5 % of blood flow values. Consequently, due to the low
computational cost of flow calculations and threshold application, active sparsity enforcement
and BSMF-based feature reconstruction enable a compressed sensing-like scheme for LSCI data
acquisition.

6. Appendix

6.1. Rolling sum algorithm for arbitrary directional moment calculation

For a given univariant data set, the most efficient calculation of a higher-order central moment is
its defining formula:

〈(x − 〈x〉)α〉 =
∑n

i=0 wi · (xi − 〈x〉)α∑n
i=0 wi

, where, 〈x〉 =
∑n

i=0 wi · xi∑n
i=0 wi

(1)

For the case of the second-order central moment (ie., variance) it can be calculated with the
well known computational formula,

〈
(x − 〈x〉)2

〉
=

〈
x2〉 − 〈x〉2. The advantage of this formula

is that if a new data point is to be included or an old one removed, the three summations over
wi , wi · xi and wi · x2

i can be modified with a single addition/subtraction applied to each term,
avoiding recalculation of the summations. We simply extend this approach to the bivariate central
moments up to order γ ≤ 6; in terms of the centralized variable u = x − 〈x〉 and v = y − 〈y〉
we seek all moments,

〈
uαvβ

〉
, where 0 ≤ α, β and α + β ≤ γ. These central moments can be

computed for any group of pixels {x, y} from the summation terms,

Σαβ =

n∑
i=0

wi · xαi · y
β
i (2)

for which there are n(n + 1)/2 terms. Section 6.2 presents the computational routine for finding
all corresponding

〈
uαvβ

〉
terms efficiently. The non-centralized sum terms Σαβ can be updated

with terms Tαβ = wi · xαi · y
β
i through addition and subtraction, Σαβ = Σαβ ±Tαβ , permitting use

within an efficient rolling sum algorithm. The standard rolling sum algorithm for a square window
is shown in Fig. 10(a). The efficiency of the square window algorithm is independent of window
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Fig. 10. Rolling sum algorithms and direction searching. (a) Rolling sum algorithm for
square sliding window. Sub-columns of window height are produced for all terms Σαβ
in the first row. The first window is initialized by adding sub-columns and the window is
moved horizontally by adding and removing sub-columns. The sub-columns are moved
vertically by adding and subtracting pixels. Every pixel and sub-column term is added once
and subtracted, at most, once. (b) Rolling sum algorithm for a circular sliding window.
A circular window is first initialized and proceeds though successive arc additions and
subtractions to trace the entire image. Every pixel is added and subtracted once times the
circle diameter. (c) Exhaustive search across directions using centered expectation values.

size. The Tαβ terms can be computed efficiently together using prior powers, Tαβ = Tα(β−1) · yi ,
or, Tαβ = T(α−1)β · xi , where T00 = wi .
The

〈
uαvβ

〉
permit us to calculate the univariate higher moments in any orientation. Any

new orientation can be defined by a linear combination of coordinates, w = au + bv, where
a2 + b2 = 1. The univariate moments 〈wγ〉 with 1 ≤ γ are calculated by taking the inner product
of the “bivariant central moment vector”

[
〈uγ〉 ,

〈
uγ−1v

〉
, . . . ,

〈
vγ−1u

〉
, 〈vγ〉

]
with an array of

binomial expansion terms from (a + b)γ as follows:

〈wγ〉 =
γ∑
i=0

©«
γ

i

ª®¬ aγ−ibi
〈
uγ−ivi

〉
(3)

This directional projection equation utilizes the same principle exploited in the derivation of
rotationally invariant moment-based measures [22].

A circular sliding window was also employed to reduce the effect of window shape on moment
orientation. The rolling sum algorithm we developed for a circular window is shown in Fig. 10(b).
The efficiency of the circular algorithm is proportional to the window size as leading and lagging
arcs are used for each window step. However, this algorithm is better suited to parallelization
on modern processors than the square algorithm. A diagram of an exhaustive search of the five
4th-order moments assessed across the four possible π/4 orientations for a circular window is
shown in Fig. 10(c). Note that only odd sized windows (pixels across) were used to permit the
superposition of resultant smaller filtered images over flow images during analysis.

The computational complexity of the brute force, square rolling sum, and circular rolling sum
algorithms are O(N2b2), O(N2), and O(N2b), respectively, where N is the number of pixels in
the image width/height and b is the width/height of the sliding window. The actual number
of vector sum update operations per image is less than N2b2, 4N2, and 2N2b, respectively, for
the three aforementioned algorithms. For a ξ4 filter with π/8 resolution and 51 pixel diameter
applied to a 500×500 pixel image (such as in Fig. 4(c)), the rolling cirular rolling sum was
> 800× faster than using the non-computational standard moment formula with explicit pixel
direction projection. Furthermore, the error introduced by catastrophic cancellation associated
with the computational formulas was negligible, σ2

signal/σ
2
error = 16 × 1012. For sparse images,

the regularization contribution to the circular rolling sum algorithm was pre-computed (i.e. all
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arc additions and subtractions). This enabled the majority of pixels to be accounted for with an
efficiency exceeding the square rolling sum algorithm (we term this sparse acceleration).

6.2. Bivariant central moment calculation

The derivation of
〈
uαvβ

〉
terms from Σαβ terms defined by Eq. 2 is presented here. The

〈
uαvβ

〉
terms are used to calculate the directional moments 〈wγ〉 via Eq. 3. In this notation, the means
are calculated from the rolling sums as follows 〈x〉 = Σ10 · Σ−1

00 and 〈y〉 = Σ01 · Σ−1
00 . We then

proceed to calculate the higher order standard moments
〈
uαvβ

〉
using lower order moments and

the terms used in their computation. This includes the iteratively computed powers of the means ,
〈x〉n = 〈x〉n−1 〈x〉. Starting with the principal coordinate variance and covariance terms (2nd
order), 〈

u2〉 = Σ20 · Σ−1
00 − 〈x〉

2 , 〈uv〉 = Σ11 · Σ−1
00 − 〈x〉 · 〈y〉 ,

〈
v2〉 = Σ02 · Σ−1

00 − 〈y〉
2 (4)

then proceeding to the 3rd order terms which are the numerators in principal coordinate skew
and co-skew.〈

u3〉 = Σ30 · Σ−1
00 − 3 〈x〉 ·

〈
u2〉 − 〈x〉3 , 〈

u2v
〉
= c21 · Σ−1

00 − 〈x〉 · 〈uv〉 − 〈y〉 ·
〈
u2〉〈

v3〉 = Σ03 · Σ−1
00 − 3 〈y〉 ·

〈
v2〉 − 〈y〉3 , 〈

v2u
〉
= c12 · Σ−1

00 − 〈y〉 · 〈uv〉 − 〈x〉 ·
〈
v2〉 (5)

where c21 = Σ21 − 〈x〉 · Σ11 and c12 = Σ12 − 〈y〉 · Σ11. Similarly, we proceed to the 4th order
terms which are the numerators in principal coordinate kurtosis and co-kurtosis.〈
u4〉 = Σ40 · Σ−1

00 − 4 〈x〉 ·
〈
u3〉 − 6 · 〈x〉2 ·

〈
u2〉 − 〈x〉4 , 〈

u3v
〉
= c31 · Σ−1

00 − 〈y〉 · (〈x〉
3 +

〈
u3〉)〈

v4〉 = Σ04 · Σ−1
00 − 4 〈y〉 ·

〈
v3〉 − 6 · 〈y〉2 ·

〈
v2〉 − 〈y〉4 , 〈

v3u
〉
= c13 · Σ−1

00 − 〈x〉 · (〈y〉
3 +

〈
v3〉)〈

u2v2〉 = (Σ22 − 2 〈y〉 · c21 − 2 〈x〉 · c12) · Σ−1
00 + 〈x〉

2 · v2 + 〈y〉2 · (
〈
u2〉 − 〈x〉2) (6)

where c31 = Σ31 − 3 〈x〉 · c21 and c13 = Σ13 − 3 〈y〉 · c12. The 5th and 6th order terms can be
calculated similarly.
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